Pauli spin matrices: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Michael Hardy
mNo edit summary
imported>Michael Hardy
m (spacing)
Line 4: Line 4:
   0 & 1 \\
   0 & 1 \\
   1 & 0  
   1 & 0  
\end{pmatrix},  
\end{pmatrix}, \quad
\sigma_y=\begin{pmatrix}
\sigma_y=\begin{pmatrix}
   0 & -\mathit{i} \\
   0 & -\mathit{i} \\
   \mathit{i} & 0  
   \mathit{i} & 0  
\end{pmatrix},  
\end{pmatrix}, \quad
\sigma_z=\begin{pmatrix}
\sigma_z=\begin{pmatrix}
   1 & 0 \\
   1 & 0 \\

Revision as of 20:51, 22 August 2007

The Pauli spin matrices are a set of unitary Hermitian matrices which form an orthogonal basis (along with the identity matrix) for the real Hilbert space of 2 × 2 Hermitian matrices and for the complex Hilbert spaces of all 2 × 2 matrices. They are usually denoted:


Algebraic properties

For i = 1, 2, 3:

Commutation relations

The Pauli matrices obey the following commutation and anticommutation relations:

where is the Levi-Civita symbol, is the Kronecker delta, and I is the identity matrix.

The above two relations can be summarized as:

.