Regular local ring: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Barry R. Smith
mNo edit summary
imported>Richard Pinch
(added reference)
Line 20: Line 20:


A [[regular ring]] is a Noetherian ring such that the localisation at every prime is a regular local ring.  
A [[regular ring]] is a Noetherian ring such that the localisation at every prime is a regular local ring.  
==References==
* [[Jean-Pierre Serre]], ''Local algebra'', [[Springer-Verlag]], 2000, ISBN 3-540-66641-9.  Chap.IV.D.


[[Category:CZ Live]]
[[Category:CZ Live]]
[[Category:Mathematics Workgroup]]
[[Category:Mathematics Workgroup]]
[[Category:Stub Articles]]
[[Category:Stub Articles]]

Revision as of 16:07, 30 October 2008

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

There are deep connections between algebraic (in fact, scheme-theoretic) notions of smoothness and regularity.


Definition

Let be a Noetherian local ring with maximal ideal and residual field . The following conditions are equivalent:

  1. The Krull dimension of is equal to the dimension of the -vector space .

And when these conditions hold, is called a regular local ring.

Basic Results on Regular Local Rings

One important criterion for regularity is Serre's Criterion, which states that a Noetherian local ring is regular if and only if its global dimension is finite, in which case it is equal to the krull dimension of .

In a paper of Auslander and Buchsbaum published in 1959, it was shown that every regular local ring is a unique factorization domain.

Regular Rings

A regular ring is a Noetherian ring such that the localisation at every prime is a regular local ring.

References